
Requirements for the Grid job submission
system for the Intensity Frontier experiments

Dennis Box , Joe Boyd , Rick Snider

V2, 1-Nov-2010

 1. Overview
Grid-based computing utilizes resources distributed across some number of distinct,
individually managed sites that provide those resources under a variety of managerial
and operational agreements. Within the Open Science Grid (OSG), these resources
are by design heterogeneous in terms of hardware, operating system, batch system,
etc. While a common software infrastructure provided by the OSG allows these
disparate sites to interoperate, the details of configuring and submitting jobs across
the grid is still a non-trivial endeavor for end-users who are not computing experts.
Beyond the simple task of submitting jobs, there may be resource limitations with
which an experiment or system operators need to contend. While batch systems
provide some tools for managing the priority of jobs and users, doing so across
multiple grid sites is again non-trivial. In addition, there are essentially no provisions
for managing or coordinating utilization of resources that are outside the control of a
batch system, such as storage systems or networks.

The objective of the job submission system is to simplify the task of submitting jobs
into this mildly hostile environment for the end-user by taking on the responsibility
for understanding the job configuration needed to perform a specific computing task
at any given site, while providing a set of tools to allow system operators and
experiment leadership to manage utilization across heterogeneous assets and to
define a uniform set of utilization policies independently of those enacted by the
underlying grid sites. The purpose of this document is to describe the requirements
such a system must have in support of the Intensity Frontier (IF) experiments.

The term job submission actually encompasses many layers of infrastructure, and
includes at minimum a job submission client, an underlying job submission
infrastructure, and a batch system configuration.

The submission client is component with which the end-user deals, and defines the
feature set available to end-users and the interface for interacting with the batch
systems. Since it must be able to submit jobs to a number of different resources

1

within a single interface, it must be independent of any particular batch system.

The job submission infrastructure talks to the submission client, prepares and
configures the submission files according to the specifications set by the users, then
performs the submission by direct communication with the batch system. This
infrastructure may have multiple components operating on different machines,
possibly at different locations, and may include parts that are submitted to the worker
nodes along with the user application. The infrastructure will allow management of
the computing resources by exploiting specific features of the underlying batch
systems in combination with information from external sources, and by coordinating
actions between other elements of the computing infrastructure.

The features of the batch system provide the primary mechanism for managing
resource utilization. To the extent that the job submission system exploits these
features to manage resources, the batch system configuration becomes an integral
part of the job submission system.

We should note that the “batch system” under consideration here is not necessarily
the native system in operation at a given site. Most modern job submission systems
employ some sort of “overlay” technology, by which one batch system is installed on
top of another. Use of this technology can effectively isolate the job submission batch
system under consideration here from the underlying batch system at a grid site.

 1.1. Basic Objectives

There are three distinct stakeholders in the job submission system, each with a
different perspective on the system that lead to sometimes conflicting goals: end-
users, experiment management, and computing system operators. The requirements
of the job submission are derived from the following basic objectives with respect to
these stakeholders:

• End-users

◦ To provide access to the distributed computing resources available to the IF
experiments, including both grid-based and non-grid computing elements.

◦ To simplify the task of utilizing these resources to solve complex or large-scale
computing problems.

• Experiment management

◦ To allow experiments to manage the utilization of available computing
resources to meet the physics goals of the experiment.

• Computing system operators:

2

◦ To provide mechanisms to manage utilization of the available resources in
order to maximize computing throughput.

◦ To minimize the effort the required to manage computing resource utilization
across multiple experiments.

The ultimate configuration of the system seeks a balance between these objectives.

 2. Requirements
In developing the requirements, we have attempted to abstract the operational needs
from the details of any specific batch system. Inevitably, some of the language in the
requirements is borrowed from that of Condor, which is used extensively at Fermilab
and throughout the grid.1

The requirements for the job submission system are listed below as sub-section
headings. The discussion accompanying each requirement explains how it meets the
objectives stated in Sec. 1, cites possible examples or use cases, and introduces
related issues or considerations. Unless stated otherwise, none of the discussion
points should be considered to be part of the requirement.

 2.1. Common submission client for all experiments

The job submission client isolates the end-user from direct interaction with the
underlying batch system. In doing so, it offers several useful functions. First, it
provides a single interface for interacting with a possibly heterogeneous set of
systems. Second, it allows instrumentation of job submissions in order to collect
monitoring, debugging, or usage data that is not available from the underlying batch
systems. (Note that instrumentation of user applications may substantially increase
the value of data collected for some purposes, but is outside the scope of the job
submission system.) Finally, and most importantly, the client layer creates the
primary means by which complex job submissions are simplified by allowing
automated generation of job submission configuration data.

 2.2. Common submission infrastructure for all experiments

The motivation for using a single job submission infrastructure layer are essentially
the same as those discussed for the submission client. In both cases, the use of a
common code base will serve to reduce the effort required to support the software

1 While the exercise of abstracting the requirements from a specific system is important for the goal of arriving at the
best possible specification for the system, we also note that a direct mapping from a set of conceptual requirements onto
the features of an actual batch system is, obviously, extremely useful. The adoption of language pertaining to a specific
batch system may therefore have benefits beyond simply communicating the requirements.

3

across many experiments. These gains are likely to be largest for the submission
infrastructure layer since it is the more complex of the two.

 2.3. Provides support for steering of jobs to specific resources

It is sometimes desirable to direct jobs to particular grid sites or to specific
computing elements within a grid sites for reasons of testing or exploiting particular
resources available at those locations. This feature is particularly important during
times of operating system migration, which tend to occur over extended periods of
time across the grid and on schedules that are beyond our control.

 2.4. Supports the concept of “groups” for the purpose of setting priorities
and accounting

Groups are aggregations of users to whom a set of specific privileges are granted.
There are two levels of group definitions that are important for proper resource
management. The first is membership in a particular experiment. Computing
resources at a given site are often allocated according to experiment. Jobs may be
granted priority access to a particular set of machines, or a certain number of job
execution slots based upon the user's affiliation with a given experiment. A site
might also want to allow access by opportunistic users only after exhausting demand
from a the end-users for a given experiment or set of experiments. For these reasons,
the system must know and track the experiment affiliation. Most of the functionality
required for these decisions is handled via the Virtual Organization infrastructure
resident at grid sites. The job submission infrastructure may need to interface to these
systems.

The second level of important group definitions is that which is created by the
experiment for the purpose of managing usage of its limited computing resources.
These groups can be used, for instance, to define special groups for various types of
data processing, such as service groups for centrally managed data and Monte Carlo
production, high priority groups for jobs that need expedited processing, low priority
groups for jobs that should run only opportunistically within the experiment, and so
on. These and other group definitions can be used to make resource allocation
decisions, such as limiting the number of execution slots available, automatic
steering of jobs to particular resources, etc.

We would envision that users specify the group under which a particular job is run. A
set of default groups would be provided to all users. Experiment management would
determine high priority group membership.

4

 2.5. Supports specification of external resources required by the job

Efficient management of limited resources under heavy demand requires knowledge
of the specific resources required by a job prior to execution. Data input and output
sources, for instance, can become overloaded with too many client applications,
leading to large data access latencies and lost CPU cycles. A system aware of the
potential load can mitigate the situation by throttling jobs, pre-staging data, or over-
subscribing CPU slots. Other resource requests could lead to jobs being routed to
specific sites. The job submission system must therefore support specification of
required resources in sufficient detail to allow resource allocations to be optimized
across contending jobs.

 2.6. Supports job ordering dependencies

Job ordering requirements arise in a number of situations, such as that of a resource
that requires extended job-specific provisioning, or that of a processing workflow
consisting of multiple interdependent steps spread across independent job sections.
For jobs that require data to be retrieved from tape, for instance, pre-staging of input
data prior to the start of processing may be needed in order to ensure efficient use of
CPU resources. Alternatively, constructing a Monte Carlo production workflow to
support a repetitive sequence of event generation, simulation, and reconstruction
steps may provide a significant reduction in effort to the end-users responsible for
running the sequence. In all such cases, job submission maintainers should be
involved with the configuration and deployment of the required workflow
infrastructure.

 2.7. Supports logging of job submission information not available via the
batch system

A considerable amount of information regarding the type of processing for which a
job is intended can be useful for monitoring operations, managing resources
allocations to meet physics goals, or in planning resource procurements. Generally
speaking, however, none of this information is available from the batch system
monitoring infrastructure. The job submission system must therefore support
specification and logging of this information.

 2.8. Operational requirements

No operational requirements have yet been specified, although there are several that
may merit consideration, such as up-time requirements, non-disruptive upgrade
requirements, etc.

5

 2.9. Provides extensible and maintainable code base

The following extensibility features should be considered as requirements of the job
submission system. First, implementation of experiment-specific customizations
should not require modification of the core job submission infrastructure.
Configuration files and sub-classing from core classes provide two mechanisms by
which to accomplish this requirement. Second, the job submission configuration must
be adaptable from the command line. This feature is needed for rapid testing and
adaptation to changes in the underlying batch system or other components that are
beyond the control of the system operators.

 2.10. Returns error messages that users can understand and can link to
appropriate corrective actions

Ideally, error messages will identify an underlying root cause or a small set of
possible root causes with well-defined prescriptions for corrective actions. These
actions should be identified in the message or from an easily accessible secondary
source. If the latter, the location of the secondary information must be broadly known
within the end-user community.

 2.11. Provides tools to assist with tarball creation

In general, worker nodes are isolated from the software environment and native data
handling systems of an experiment. Working on the grid therefore inevitably involves
transporting to the worker nodes not only the application program, but also a set of
associated scripts and libraries needed to run the program and provide necessary
services within that hostile environment. Part of preparing a grid job for submission
typically involves creating one or more tarballs that contain all of these components.
The task of packaging the job for the grid is a new step in the workflow for most IF
experiment end-users, since the current IF computing model assumes that both the
full software environment and native data handling systems are accessible at all
times. The job submission system should provide a set of tools that assist end-users
in identifying the components that need to be transported and in creating the
necessary tarballs.

 2.12. Provides sensible defaults so that the most simple submission
command is correct for the largest possible fraction of users

The defaults of the job submission system should be configured in such a way that
the most simple command possible, “submit <myjob> <to this resource>”, or the
equivalent, is meaningful and adequate for the largest possible fraction of jobs and
end-users. A user-defined override mechanism should be provided.

6

 3. Short-term strategy
There currently exists a set of IF experiment-specific job submission scripts with
names minos_jobsub, minerva_jobsub, etc. Although the feature set
available with these scripts is limited, they have the advantage that they are already
understood by users. One approach to meeting the job submission requirements in
the short term is to consolidate the experiment-specific scripts into a single script
with the experiment selected by local configuration or command line argument. The
feature set could then be extended in order to provide the most important of the
required functionality. Implementing this solution will require re-writing the
infrastructure underlying these scripts. Part of this work has already been completed
in a separate project with the goal of reducing the maintenance burden of supporting
the individual submission scripts. Adding the capability to submit to grid sites is
relatively simple, although much of the job configuration work still needs to be
performed by the user.

 4. Long-term strategy
In the long term, a single submission infrastructure must be developed or adopted to
provide the back-end implementation for a job submission command common to the
IF experiments. The solution must be extensible via sub-classing to provide
experiment-specific behavior that cannot be accommodated via configuration.
Providing an easy transition for end-users and a low maintenance burden for system
operators will be important goals in evaluating solutions. If an existing non-
commercial system is adopted, then CD/REX will seek formal recognition as a
product stakeholder, possibly to the extent of accepting co-development
responsibilities. Given the breadth of IF experiments to be supported, such an
arrangement is required to ensure that operational issues, new feature requests, etc.,
are dealt with in an expeditious manner.

There are currently at least two existing systems with the potential to provide the
required feature set, a significant sub-set of required features, or some models for
good solutions. These are the CafSubmit / CafExe / CafMon infrastructure in use by
CDF, and the PANDA system in use by ATLAS.

 5. Summary
The requirements for the IF job submission system described in this document should
afford the IF experiments with sufficient tools and flexibility to manage utilization of
available grid computing resources to meet the physics priorities of the experiments.

7

At the same time, the system will allow system operators to maximize efficiency and
throughput given the management strategy of the experiment. Beyond these technical
goals, the overriding objective in adopting a job submission solution will be to
simplify for end-users the task of submitting and managing large-scale grid
computing projects.

8

	Requirements for the Grid job submission system for the Intensity Frontier experiments
	 1. Overview
	 2. Requirements
	 3. Short-term strategy
	 4. Long-term strategy
	 5. Summary

